GLO-Roots: an imaging platform enabling multidimensional characterization of soil-grown root systems.
Root systems develop different root types that individually sense cues from their local environment and integrate this information with systemic signals. This complex multi-dimensional amalgam of inputs enables continuous adjustment of root growth rates, direction, and metabolic activity that define a dynamic physical network. Current methods for analyzing root biology balance physiological relevance with imaging capability. To bridge this divide, we developed an integrated-imaging system called Growth and Luminescence Observatory for Roots (GLO-Roots) that uses luminescence-based reporters to enable studies of root architecture and gene expression patterns in soil-grown, light-shielded roots. We have developed image analysis algorithms that allow the spatial integration of soil properties, gene expression, and root system architecture traits. We propose GLO-Roots as a system that has great utility in presenting environmental stimuli to roots in ways that evoke natural adaptive responses and in providing tools for studying the multi-dimensional nature of such processes.
Native environment modulates leaf size and response to simulated foliar shade across wild tomato species.
The laminae of leaves optimize photosynthetic rates by serving as a platform for both light capture and gas exchange, while minimizing water losses associated with thermoregulation and transpiration. Many have speculated that plants maximize photosynthetic output and minimize associated costs through leaf size, complexity, and shape, but a unifying theory linking the plethora of observed leaf forms with the environment remains elusive. Additionally, the leaf itself is a plastic structure, responsive to its surroundings, further complicating the relationship. Despite extensive knowledge of the genetic mechanisms underlying angiosperm leaf development, little is known about how phenotypic plasticity and selective pressures converge to create the diversity of leaf shapes and sizes across lineages. Here, we use wild tomato accessions, collected from locales with diverse levels of foliar shade, temperature, and precipitation, as a model to assay the extent of shade avoidance in leaf traits and the degree to which these leaf traits correlate with environmental factors. We find that leaf size is correlated with measures of foliar shade across the wild tomato species sampled and that leaf size and serration correlate in a species-dependent fashion with temperature and precipitation. We use far-red induced changes in leaf length as a proxy measure of the shade avoidance response, and find that shade avoidance in leaves negatively correlates with the level of foliar shade recorded at the point of origin of an accession. The direction and magnitude of these correlations varies across the leaf series, suggesting that heterochronic and/or ontogenic programs are a mechanism by which selective pressures can alter leaf size and form. This study highlights the value of wild tomato accessions for studies of both morphological and light-regulated development of compound leaves, and promises to be useful in the future identification of genes regulating potentially adaptive plastic leaf traits.
A deletion at the Lpx-B1 locus is associated with low lipoxygenase activity and improved pasta color in durum wheat (Triticum turgidum ssp. durum)
The concentration of yellow carotenoid pigments in durum wheat grain is an important quality criterion and is determined both by their accumulation and by their degradation by lipoxygenase enzymes (Lpx loci). The existence of a duplication at the Lpx-B1 locus and the allelic variation for a deletion of the Lpx-B1.1 copy is reported. This deletion was associated with a 4.5-fold reduction in lipoxygenase activity and improved pasta color (P<0.0001) but not semolina color, suggesting reduced pigment degradation during pasta processing. A molecular marker for the deletion was mapped on chromosome 4B in a population obtained from the cross between durum line UC1113 and variety Kofa. A second lipoxygenase locus, designated Lpx-A3, was mapped on the homoeologous region on chromosome 4A and was associated with semolina and pasta color (P<0.01) but not with lipoxygenase activity in the mature grain. Selection for both the UC1113 allele for Lpx-A3 and the Kofa Lpx-B1.1 deletion resulted in a 10% increase in yellow scores for dry pasta relative to the opposite allele combination. This result indicates that the markers and the new allelic variants reported here will be useful tools to manipulate the wheat Lpx loci and to improve pasta color.