
INVESTIGATION

Tissue-Specific Transcriptome Analysis Reveals
Candidate Genes for Terpenoid and
Phenylpropanoid Metabolism in the Medicinal
Plant Ferula assafoetida
Hajar Amini,*,† Mohammad Reza Naghavi,†,1 Tong Shen,‡ Yanhong Wang,§ Jaber Nasiri,†

Ikhlas A. Khan,§ Oliver Fiehn,‡,** Philipp Zerbe,* and Julin N. Maloof*,1

*Department of Plant Biology and ‡West Coast Metabolomics Center, University of California, Davis, CA 95616,
†Department of Agronomy and Plant Breeding, Agricultural and Natural Resources College, University of Tehran, Iran,
77871-31587, §National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, University
of Mississippi, Oxford, MS 38677, and **Department of Biochemistry, Faculty of Sciences, King Abdulaziz University,
Jeddah, Saudi-Arabia

ORCID IDs: 0000-0002-6261-8928 (O.F.); 0000-0001-5163-9523 (P.Z.); 0000-0002-9623-2599 (J.N.M.)

ABSTRACT Ferula assafoetida is a medicinal plant of the Apiaceae family that has traditionally been used
for its therapeutic value. Particularly, terpenoid and phenylpropanoid metabolites, major components of the
root-derived oleo-gum-resin, exhibit anti-inflammatory and cytotoxic activities, thus offering a resource for
potential therapeutic lead compounds. However, genes and enzymes for terpenoid and coumarin-type
phenylpropanoid metabolism have thus far remained uncharacterized in F. assafoetida. Comparative de
novo transcriptome analysis of roots, leaves, stems, and flowers was combined with computational
annotation to identify candidate genes with probable roles in terpenoid and coumarin biosynthesis.
Gene network analysis showed a high abundance of predicted terpenoid- and phenylpropanoid-metabolic
pathway genes in flowers. These findings offer a deeper insight into natural product biosynthesis in
F. assafoetida and provide genomic resources for exploiting the medicinal potential of this rare plant.
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Ferula assafoetida L. (Apiaceae) is a herbaceous, monoecious and pe-
rennial plant indigenous to Kashmir, Afghanistan, and Iran (Iranshahy
and Iranshahi 2011). F. assafoetida is predominantly valued for its
medicinal uses as an important source of oleo-gum-resin, called asa-
foetida, that is obtained from the exudates of the tap roots (Kavoosi and
Rowshan 2013). Asafoetida has broad therapeutic properties, for

example for the treatment of inflammations, neurological and digestive
disorders, rheumatism, headache, arthritis, and dizziness (Iranshahy
and Iranshahi 2011). The oleo-gum-resin consists of three main frac-
tions, including resin (40–64%), gum (25%) and essential oil (10–17%)
(Amalraj and Gopi 2017). Phenylpropanoids (especially coumarins-
related compounds) and terpenoids are the major constituents of the
resin (Amalraj and Gopi 2017), whereas the essential oil is mostly
comprised of sulfur-containing compounds, as well as volatile mono-
and sesqui-terpenoids (Divya et al. 2014). Among these metabolites,
sesquiterpene coumarins are of particular importance, due to their
extensive and promising biological properties (Iranshahi et al. 2008).
Sesquiterpene coumarins, which contain a coumarin or 1-benzopyran-
2-one group joint with a sesquiterpene scaffold, are almost exclusively
found in the genus Ferula and accumulate mainly in the roots of the
plant (Curini et al. 2006).

In plants, terpenoid metabolites are derived from two isomeric
5-carbon precursors, isopentenyl diphosphate (IPP) and dimethylallyl
diphosphate (DMAPP), which are formed via the plastidial methyl-
erythritol-5-phosphate (MEP) and the cytosolic mevalonate (MEV)
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pathway (Chen et al. 2011; Falara and Pichersky 2012). Prenyltransfer-
ase-catalyzed condensation of IPP and DMAPP units into prenyl di-
phosphate intermediates of different chain length provides central
precursors that are further converted by species-specific enzymes
families of terpene synthases (TPSs) and cytochrome P450 monoox-
ygenases (P450s) to give rise to the chemical diversity of plant terpe-
noids (Chen et al. 2011; Pateraki et al. 2015) (Supplementary Figure
S1A). In addition to terpenoids, flavonoids (especially luteolin) and
coumarin-related compounds (especially umbelliferone) are enriched
in F. assafoetida (Pangarova and Zapesochnaya 1973; Amalraj and
Gopi 2017). These metabolites are derived from p-coumaroyl-CoA
formed via the plastidial shikimate pathway (Naoumkina et al.
2010; Vogt 2010). Branching from this core intermediate, distinct
2-oxoglutarate-dependent dioxygenases, feruloyl-CoA-6’-hydroxylases
(F6’H) and coumaroyl-CoA-2’-hydroxylases (C2’H), facilitate the key
steps in the biosynthesis of umbelliferone and other coumarins
(Matsumoto et al. 2012; Vialart et al. 2012; Tohge et al. 2013). By
contrast, flavonoid biosynthesis requires the conversion of p-coumaroyl-
CoA by a chalcone synthase (CHS) and a chalcone isomerase (CHI),
followed by various possible functional modifications of the result-
ing naringenin intermediate (Naoumkina et al. 2010; Vogt 2010)
(Supplementary Figure S1B).

Rapid advances in genomics and biochemical technologies have
enabled a deeper investigation of metabolic pathways in range of
medicinal and other non-model plants (Xiao et al. 2013; Zerbe et al.
2013; Kitaoka et al. 2015; Wurtzel and Kutchan 2016). Among
members of the Apiaceae, genomics-enabled gene discovery in car-
rot (Daucus carota) was utilized to identify flavonoid and isopre-
noid pathway genes (Iorizzo et al. 2016) and enabled the functional
characterization of two carrot terpene synthase genes, the sesqui-
terpene synthase DcTPS1 and the monoterpene synthase DcTPS2
(Yahyaa et al. 2015).

In this study, we employed comparative de novo transcriptome
analyses and computational gene annotation to identify candidate
genes with probable roles in the biosynthesis of bioactive terpenoid
and coumarin-type phenylpropanoid metabolites in F. assafoetida.

MATERIAL AND METHODS

Plant material
Roots, stems, flowers, and leaves of F. assafoetida were collected from
the Molla Ahmad Mountains, Isfahan province, Iran, at an altitude of
2250meters (53�359E and 32�159N). Samples were collected from three
separate plants, which were used as biological replicates. The identity of
the harvested plants was verified by the Iranian Biological Resource
Center (IBRC).

Metabolite analysis
Roots, stems, flowers, and leaves were air-dried in the shade at room
temperature. Terpenoid and sesquiterpene-coumarin compounds pre-
sent in the oleo-gum-resin were extracted from the essential oil. In the
context of this study, essential oilswerepreparedbygrinding20gramsof
plantorgans (roots, stems,flowers, and leaves) toafinepowder.Essential
oils were then isolated through hydro-distillation for 5 hr, using a
Clevenger type apparatus. The distilled oils were dried over anhydrous
sodium sulfate and after filtration stored at 4�. Terpenoid analysis was
then performed via GC-MS analysis as described in the Supplemen-
tary Methods. Product identification was achieved by comparison to
reference mass spectra and retention indices (RI) available through
the US National Institute of Standards and Technology (NIST, USA),
WILEY 1996 Ed. mass spectral library, as well as an in-house library.

Umbelliprenin, umbelliferone, and luteolin were quantified in
different organs and oleo-gum-resins of F. assafoetida by ultra-high-
performance liquid chromatography-quadrupole time-of-flight mass
spectrometry (UHPLC-QToF-MS) at the National Center for Natural
Products Research at the University of Mississippi as outlined in the
Supplementary Methods.

RNAseq library preparation and pre-processing of
short reads
RNA was extracted using BioZOL total RNA extraction kit (BioFlux,
Japan) as detailed in the manufacturer’s instructions. For removing poly-
phenol and polysaccharide content in different organs, especially roots,
an additional purification step was applied as follows: The resulting
pellets were dissolved in Diethyl Pyrocarbonate (DEPC)-treated water
and extracted once with phenol-chloroform (1:1) and then with chloro-
form. The aqueous solution was transferred into 2 new tubes, and 3M
sodium acetate (pH 5.2) with 5M NaCl and 0.6 volume of cold isopro-
panol was added. This solutionwasmixed and then stored at -20� for one
hour. Next, the solution was centrifuged at 13,000 rpm for 10 min at 4�.
The pellet was collected after centrifugation by discarding the upper
aqueous phase. The pellet was washed twice with 75% ethanol by
re-suspending the pellet and centrifuging at 10,000 rpm for 10 min at
4� at each of the wash steps. The ethanol was allowed to evaporate, and
the pellet was resuspended in 40 ml of DEPC-treated water. Further-
more, we removed any contaminating DNA using RNase-free DN-
ase I (Thermo Fisher Scientific Inc). Quality and quantity of RNA
were assessed by separation of RNA by gel electrophoresis on a 1%
agarose gel, NanoDrop (ND-1000) and Agilent 2100 Bioanalyzer.
RNA samples with RNA integrity number (RIN) values .8.0 were
selected for constructing libraries. RNA libraries were obtained
according to Breath Adapter Directional sequencing (BrAD-seq) pro-
tocol (Townsley et al. 2015) with shotgun (SHO) type strand-specific
libraries for sending to the DNA Technologies Core at UC Davis.
RNA sequencing was performed taking steps for mRNA Fragmenta-
tion, 3-prime Adapter Priming and cDNA Synthesis, 5-prime Duplex
Breath Capture Adapter Addition (Strand Specific) and enrichment
and adapter extension. The paired-end sequencing with read length of
150 bp was performed on an Illumina HiSeq 4000 platform by the
DNA Technologies Core at the UC Davis Genome Center. Another
set of RNA samples were sent to the Beijing Genomics Institute (BGI)
and Novogene for library preparation and sequencing. After sequenc-
ing, raw reads were separated by barcode and filtered by quality using
the HiSeq 4000 software CASAVA V1.8. The read quality before
and after quality control with Trimmomatic was tested with FastQC
quality assessment (http://www.bioinformatics.babraham.ac.uk/
projects/fastqc/) and results were collected from all samples into a
single report for easy comparison with MultiQC (Ewels et al. 2016). The
parameters used in Trimmomatic V0.33 (Bolger et al. 2014) for trim-
ming and cropping the FASTQ data as well as removing adapters
was set as follows: ILLUMINACLIP:2:30:10, LEADING:3, TRAILING:3,
SLIDINGWINDOW:4:15,MINLEN:120. The summary of the RNAseq
reads after trimming, cropping, and adapter removal is shown in
Supplementary Table S2.

De novo transcriptome assembly and evaluation
We utilized four different de novo transcriptome assembly pipelines
to ensure that a high quality reference transcriptome was assembled
(Supplemental Table S3). These four different de novo transcriptome
assembly pipelines are described in more detail in the Supplementary
Methods.
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Reads from all organs were combined and assembledwithTrinity v2.4.0
with kmer 25 (Grabherr et al. 2011) and Oases v0.2.06 with kmer 25, 31,37,
43, 49 (Zerbino andBirney 2008; Schulz et al. 2012).Drap v1.91was applied
as a post processing step to compact and correct each assembled transcrip-
tome (Cabau et al. 2017). In addition to thesemethods, we usedKhmer v2.0
tools (Crusoe et al. 2015) to apply variable kmer coverage abundance trim-
ming to the reads prior to Trinity assembly. This reduces the computational
cost of assembly without negatively affecting the quality of the assembly.
Several different approaches were utilized to assess the quality of each
assembled transcriptome. First, we investigated the length distribution of
the transcripts produced by the different pipelines (Supplementary Figure
S2A). Second, we mapped the reads from each sample to each assembled
transcriptome with STAR 2.5.2b to determine the percentage of reads that
mapped to each assembly (Supplementary Figure S2B) (Dobin et al. 2013).
Finally, we assessed the completeness of each assembled transcriptome in
terms of expected genes with BUSCO v3 (Simão et al. 2015; Waterhouse
et al. 2018) and using “Plant set (Embryophyta odb9)” as a database of
BUSCO group with 1440 genes (Supplementary Table S4).

Transcriptome annotation
We first annotated the assembled transcriptome using the dammit tool
(Scott 2016). In this analysis, dammit searched thewell-known annotated
protein databases, for example, Pfam (Finn et al. 2015), Rfam (Kalvari
et al. 2017), OrthoDB (Zdobnov et al. 2016), BUSCO, andUniRef (Suzek
et al. 2014) for significant matches against the F. assafoetida assem-
bled transcriptomes using blast (E-value cutoff,1e-5). A large frac-
tion of the assembled transcripts was assigned successfully to known
annotated protein from other plants. Out of the 60,134 assembled
transcripts, dammit was able to map 54,129 (.90%) to known genes
using blast with an E-value ,0.00001 (for each hit).

In addition, the most likely protein sequence was identified by using
TransDecoder (http://transdecoder.github.io) to find the longest open
reading frame. Furthermore, sequences were initially annotated by com-
paring F. assafoetida protein sequences against the Arabidopsis protein
sequence database (TAIR10) (n = 35,386). We were able to successfully
find a significant hit (E-value,1e-10) to 30,344 (.85%) of the Arabidop-
sis protein sequence, which covered 34,920 (58%) of the F. assafoetida
assembled transcripts. We also used blastx to compare the assembled
transcriptome against all RefSeq plants database (.10,710 plants)
(Pruitt et al. 2006). Our observations indicated that a significant majority
of our assembled contigs (.77%) had the best hit with D. carota (Sup-
plementary Figure S3). This is expected given the close relationship of
F. assafoetida and D. carota (Ahmed et al. 2005).

Gene ontology (GO) analysis was performed on the whole assem-
bled transcriptome using Blast2GO v1.3.3 (Conesa et al. 2005; Götz et al.
2008). Blast2GO allowed us to identify similarity of the F. assafoetida
sequences to GenBank non-redundant proteins (Nr) and Swiss-Prot
databases using blastx (E-value ,1e-5 with the number of hits limited
to a maximum of twenty). This was followed by InterProScan search,
mapping, and annotation using standard parameters from Blast2GO.
After obtaining GO annotation for every transcript, WEGO software
(Ye et al. 2006) was then used to simplify the output for producing
combined graphs for molecular function, cellular process, and biological
process. (Supplementary Figure S4). Based on Gene Ontology analyses, a
total of 31,524 (52.42%) transcripts had one or more terms assigned.

Phylogenetic analysis
Protein sequence alignments were generated using CLC bio software
(www.Qiagen.com) followed by manual curation. Maximum-likelihood
phylogenetic analyses were performed using PhyML version 3.0.1 beta

(Anisimova et al. 2011) with four rate substitution categories, LG
substitution model, BIONJ starting tree and 500 bootstrap repetitions.

Tissue-specific differential expression analysis
To identify candidate genes for terpenoid and phenylpropanoid me-
tabolism in F. assafoetida, we need to compare expression level of genes
across different organs. So, the differential expression analysis was
utilized to determine how gene expression of target processes differ
between different organs.

Todeterminepatterns of gene expression across the different organs,
RNA abundance in the assembled transcriptome was quantified using
Kallisto (Bray et al. 2016), then the differential expression analysis was
calculated from 12 samples from UC Davis facility (3 samples from
4 different organs) using the edgeR package in the R statistical envi-
ronment (FDR ,0.05) (Robinson et al. 2010b; R Core Team 2016).
Sample libraries were normalized by calculating the effective library size
and normalization factor using the TMM method on counts data
(Robinson and Oshlack 2010a). We then identified genes differentially
expressed among plant organs using a generalized linearmodel (glm) in
edgeR and multiple-testing correction via the Benjamini and Hochberg
(BH) procedure (Benjamini andHochberg 1995). TheVenn diagram of
differential expressed genes of pairwise comparison of different organs
was done using Intervene tool (Khan andMathelier 2017). We provide
additional information regarding the experimental design of differen-
tial expression analysis in the Supplementary Materials.

Over-representation analysis of differentially
expressed genes
To find significantly enriched GO terms, over-representation analysis
(ORA) was done by GOseq package (Young et al. 2010), followed by
(BH) multiple testing correction to achieve an experiment-wise thresh-
old of P, 0.05.Moreover, we investigated the KEGGdatabase by using
BlastKOALA (Kanehisa et al. 2016) to assign KEGGOrthology (KO) to
each transcript. Associated plant-related KEGG pathway ids were
obtained from the KO by using KEGGREST Bioconductor package
(Tenenbaum 2018). Over-representation analysis of KEGG pathways
was also conducted by GOseq package at cut off value p-adjust ,0.05
(Young et al. 2010) in the R statistical environment (R Core Team
2016). The enriched pathways were visualized with the Pathview Bio-
conductor package (Luo and Brouwer 2013).

Gene network analysis (WGCNA)
To find genetic modules that were highly co-expressed across different
organs, we performed a weighted gene co-expression network analysis
using the WGCNA package v1.63 in R/Bioconductor (Langfelder and
Horvath 2008). First, pairwise gene co-expression was calculated from
the 12 samples from UC Davis facility (3 samples from 4 different
organs) to avoid the possibility of a batch effect that could occur if
we included samples sequenced at other facilities.

We further investigated the optimal power for constructing the gene
co-expression as indicated in WGCNA best practices and picked the
value 12 (Supplementary Figure S5) as a soft power. The network was
constructed by setting the type to signed hybrid, minModuleSize to 30,
dissimilarity threshold to 0.2, and deepslit to 2.

Data availability
All transcriptome data were submitted to the NCBI sequence read
archive (SRA) with accession number (PRJNA476150) and Temporary
Submission ID (SUB4158602). All R scripts for this paper are available
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at https://github.com/MaloofLab/Amini-G3-2019-Ferula_RNAseq_Anal-
ysis. Supplemental material available at Figshare: https://doi.org/
10.25387/g3.7609223.

RESULTS AND DISCUSSION
To identify the tissue-specific abundance of terpenoid and coumarin-
type phenylpropanoid biosynthetic genes we employed correlation
studies of gene expression and metabolite abundance across select
plant organs (Figure 1).

Abundance of major oleo-resin metabolites
Coumarin-andflavonoid-typephenylpropanoids, aswell as terpenoidsare
major bioactive constituents of F. assafoetida. To investigate the distribu-
tion of these metabolites between different organs, we measured the
abundance of select terpenoids, flavonoids (luteolin) and coumarins
(umbelliferone) using liquid and gas chromatography-mass spectrometry
(LC/GC-MS). Among the identified terpenoid metabolites, b-pinene,
a-pinene, g-elemene, b-maaliene, and a/b-eudesmol were the most
abundant. Furthermore, terpenoids differed in their abundance in differ-
ent organs and accumulated at the highest level in roots containing near
equal amounts of mono- and sesqui-terpenoids that formed 54% of the
resin-derived essential oil (Supplementary Figure S6). This is consistent
with previous studies in D. carota that suggested that terpenoid metabo-
lism differs substantially between organs (Habegger and Schnitzler 2000).

The coumarin umbelliferone and the flavone luteolin are commonly
occurring phenylpropanoidmetabolites inmembers of theApiaceae family
and serve as a precursor for a range of specialized metabolites, including
pyrano-coumarins and furano-coumarins (Luo et al. 2017; Yao et al. 2017).
Therefore, we quantified umbelliferone and luteolin across the select plant
organs (Supplementary Figure S7A and S7B) and isolated oleo-gum-resin
fractions (Supplementary Figure S7C). Umbelliferone and luteolin were
most abundant in roots (1.956 0.8 mg/g) and flowers (99.72 6 40.75
mg/g), respectively (Supplementary Figure S7A and S7B).

De novo transcriptome assembly and evaluation
Since no reference genome is available for the genus Ferula, we
performed de novo transcriptome assembly to obtain a reference

transcriptome assembly as described in the Supplementary Materials.
The Oases_DRAP de novo transcriptome assembly was used for
further analysis.

Transcriptome annotation
Togainadditional insight intobiosyntheticpathwaysall transcriptswere
queried against the KEGG database with blastKOALA. We found that
43,453 of the 60,134 assembled transcripts were assigned successfully
to the KEGG database. We next queried the generated transcriptome
data for key genes in terpenoidandphenylpropanoidmetabolism.Using
homology searches against manually curated protein databases of
key gene families with an E-value cut-off of 1e-75 (Zerbe et al. 2013),
we identified 27 candidates for MEV and MEP pathway genes,
32 transcripts with significant matches to terpene synthase (TPS)
and triterpene synthase (TTS) genes, and 245 transcripts representing
putative P450s. In addition, 142 transcripts with significant matches
to phenylpropanoid pathway genes were identified.

Phylogenetic analysis of transcripts with predicted
functions in terpenoid and phenylpropanoid
metabolism
Of the identified F. assafoetida transcripts, 16 TPS- and TTS-like se-
quences, as well as 23 putative phenylpropanoid-metabolic enzymes,
which represented full-length sequences with the highest similarity to
known enzymes were selected for further phylogenetic analysis. To
infer possible functions, phylogenetic analysis of these enzyme candi-
dates was performed in comparison to previously reported protein
sequences of related Apiaceae species (including Daucus carota and
Thapsia garganica), as well as proteins from Asteraceae and other dicot
species that represent key pathway reactions. For clarity, all gene can-
didates further investigated here have been assigned gene designations
based on their predicted function, using common abbreviations for
terpenoid- and phenylpropanoid-metabolic enzymes. The correspond-
ing transcript identifiers are given in Supplementary Table S5 and S6.

Of the identifiedTPS-relatedgenes, nine candidatesweremost closely
related to members of the TTS family, including predicted cycloartenol

Figure 1 Workflow for transcriptome and metabolite analysis of different organs of F. assafoetida. Shown is a schematic overview of the tran-
scriptomics analysis performed on different organs (flowers, leaves, stems, and roots) harvested from three wild F. assafoetida plants (green
arrows) and used for transcriptome (red) and targeted metabolite analysis (blue). Black arrows highlight the correlation of de novo transcriptome
and metabolite analysis to identify candidate genes with possible roles in terpenoid and coumarin-type phenylpropanoid metabolism.
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synthases (TTS1-2, 4-6 and 9) with possible roles in sterol biosynthesis,
and b-amyrin synthases (TTS3, 7 and 8) putatively involved in
the formation of specialized triterpenoid metabolites (Figure 2). In addi-
tion, seven candidates were placed within the TPS family. Among these,
F. assafoetidaCPS andEKS clusteredwith known ent-copalyl diphosphate
synthases (CPS) and ent-kaurene synthases (EKS) with widely conserved
functions in gibberellin phytohormone biosynthesis (Peters 2010;
Zerbe and Bohlmann 2015), suggesting a similar function. In addition,
F. assafoetida TPS7 clustered with known geranyllinalool synthases in-
volved in the biosynthesis of defensive homoterpene metabolites (Herde

et al. 2008; Falara et al. 2014; Richter et al. 2016). The remaining TPS
candidates were placed within the group of mono- and sesqui-TPSs in-
cluding characterized and predicted TPSs of the close relative D. carota
(Yahyaa et al. 2015; Yahyaa et al. 2018). Combinedwith their phylogenetic
relationships, presence of plastidial transit peptides and a characteristic
RRX8W motif (Chen et al. 2011) suggested a monoterpene synthase
function for TPS1 and TPS4, whereas absence of these features indicated
a sesquiterpene synthase activity for F. assafoetida TPS2 and TPS3.
However, an only distant relationship to currently known Apiaceae
TPSs, such as theD. carota b-caryophyllene synthase DcTPS1 and the

Figure 2 Maximum-likelihood phylogenetic tree of terpene synthase (TPS) and triterpene synthase (TTS) candidates identified in F. assafoetida as
compared to known enzymes from related plant species. The Physcomitrella patens ent-kaurene synthase/copalyl diphosphate synthase (EKS/
CPS) was used to root the tree. Branches with bootstrap support of .80% (500 repetitions) are highlighted with black dots.
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geraniol synthase DcTPS2, did not allow a more detailed functional
prediction (Keilwagen et al. 2017).

Phylogenetic analysis of candidate genes for coumarin biosynthesis
in F. assafoetida showed the presence of phenylalanine ammonia-lyase
(PAL) and 4-coumarate:CoA-ligase (4CL) as key enzymes controlling
phenylpropanoid biosynthesis as multi-gene families of five and six
members, respectively (Figure 3). Although the size of the 4CL family
in F. assafoetida is unclear with 4CL-like 4 and 6 being represented as
partial sequences only, 4CL enzymes in other species are more com-
monly encoded by a single gene (Ehlting et al. 1999; Vogt 2010). Hence,
a more expansive evolutionary divergence of this pathway component

may have occurred in F. assafoetida. In contrast, only a single transcript
was identified that showed significant similarity to p-coumaroyl-CoA
29-hydroxylase (C2’H) enzymes that catalyze the hydroxylation of the
4CL product p-coumaroyl-CoA as a key reaction in the formation of
coumarins such as umbelliferone (Yao et al. 2017) (Figure 3). Unlike
coumarins, biosynthesis of flavone metabolites, including luteolin
abundant in F. assafoetida oleo-gum-resin and other organs (Figure
S7), proceeds through the activity of a chalcone synthase (CHS), fol-
lowed by further modifications by chalcone isomerases (CHI), flavone
synthases (FNS), and flavanone 3-hydroxylases (F39H) (Bourgaud et al.
2006; Naoumkina et al. 2010; Vogt 2010). Phylogenetic analyses of the

Figure 3 Maximum-likelihood phylogenetic tree illustrating interrelations relationships of enzyme candidates identified in F. assafoetida with
known phenylpropanoid-biosynthetic enzymes. Branches with bootstrap support of .80% (500 repetitions) are highlighted with black dots. PAL,
phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA-ligase; CHS, chalcone synthases; CHI, chalcone isomerases; FNS, flavone synthases; F39H,
flavanone 3-hydroxylase.
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identified phenylpropanoid-metabolic gene candidates in F. assafoetida
showed small gene families of CHS, CHI and F39H enzymes the oc-
currence of these pathway enzymes as multi-gene families in other
plant species (Naoumkina et al. 2010; Vogt 2010). Conversely, FNS
appears to be encoded by a single gene with the highest similarity to
known type I FNS dioxygenases rather than FNSII enzymes of the
CYP93B P450 subfamily in members of the Apiaceae (Britsch 1990;
Fliegmann et al. 2010).

Tissue-specific differential expression analysis
The highest levels of differential gene expressionwere observed between
leaves and roots, with a total of 3210 genes differentially expressed
(FDR ,0.05). Surprisingly, the flower vs. root contrast showed sub-
stantially fewer genes differentially expressed (420; FDR, 0.05) than
leaf vs. root; this may be due to greater sample heterogeneity in the
flower samples as compared to the leaf samples. The Venn diagram
of pairwise comparisons indicated the highest similarly belonged
to differential expressed genes of flowers compared to roots and leaves
compared to roots (275) (Supplementary Figure S8).

Over-representation analysis of differentially
expressed genes
The differentially expressed genes in different organs are indicative of
biological function most relevant to each organ. Thus, we investigated
the GO term over-representation of differentially expressed genes
among select pairwise organ comparisons (Supplementary Figure S9).
Photosynthesis GO terms were significantly upregulated in leaves
(p-adjust ,1e-09) and flowers (p-adjust ,4e-05) as compared to roots
(Figure S9A and S9B). With respect to terpenoid we observed terpene
synthesis activity GO term as over-represented in up-regulated genes in
roots vs. flowers (p-adjust,0.007) and up-regulated in flowers vs. stems
(p-adjust,0.0002), suggesting that roots have the highest expression of
the GO category, followed by flowers, and then stems (Figure S9C).

To examine the tissue-specificity of the biosynthetic pathways of
the metabolites targeted here, we further studied the over-represented
KEGG orthology (KO) terms in differentially expressed genes using
GOseq package. The pathway analysis using KEGG database indicated
several over-representedKOterms for thedifferential expressedgenes in
various organs (Supplementary Figure S10). We found that the KEGG
pathway for biosynthesis of sesqui- and tri-terpenoidwasupregulated in
flowers vs. stems while the KO term for flavonoid biosynthesis was
upregulated in flowers vs. other organs (Supplementary Figure S10).
These two pathways were visualized, and the candidate genes were
colored (Supplementary Figure S11 and S12).

Gene network analysis (WGCNA)
An alternative to identifying gene involved in terpenoid and flavonoid
biosynthesis is touse gene co-expression to reconstruct geneticmodules.
Because this method treats each sample separately it may be better at
identifying clusters of genes that function together. To accomplish this,
weperformedaweightedgeneco-expressionnetworkanalysis (WGCNA)
(Langfelder and Horvath 2008) to find genetic modules which are
highly co-expressed across the 12 samples (3 samples from 4 differ-
ent organs) in F. assafoetida. WGCNA found 43 non-overlapping
modules ranging from 38 to 3557 total gene size (Supplementary
Figure S13).

Our metabolite analysis had indicated substantial variation in ter-
penoid and flavonoid abundance among different organs (Supplemen-
tary Figure S6 and S7). To find modules associated with these patterns,
we next asked if any module could be related to our metabolites of

interest. To do this, we calculated the correlation of each module’s
eigengene expression value and the measured metabolites of interest:
terpenoid and coumarin-type phenylpropanoids including umbelliferone
and luteolin.

One module of interest is the darkseagreen3 module. The darksea-
green3module eigengene had significant correlations with sesquiterpe-
noid (r= -0.76 and adjusted p–value,0.0038) and the luteolin flavone
compound (r= 0.83 and adjusted p–value ,0.0014). Furthermore, the
GO term significantly associated with the darkseagreen3 module was
terpene synthase activity (Supplementary Figure S14A). Combined with
the correlationwith sesquiterpenoid content (adjusted p–value,0.0038),
it is clear that genes in this module are important for sesquiterpenoid
biosynthesis. The correlation coefficient (r= -0.76) indicated negative
correlations between the darkseagreen3 module eigengene and sesqui-
terpenoid, meaning that higher expression of this module corresponds
to less sesquiterpene synthesis. This suggests that the darkseagreen3
module contains genes which act as repressors for sesquiterpene syn-
thesis or that shunt precursors into alternative pathways.

The darkseagreen3 module also was over-represented in GO terms
“transferase activity, transferring hexosyl groups” that are parent of the
“Luteolinidin 5-O-glucosyltransferase activity” term. This suggests that
the darkseagreen3 module could be related to luteolin biosynthesis
(Figure S14A). Since the flowers had the highest level of Luteolin while
roots had the highest level of sesquiterpenoid, it could be concluded the
darkseagreen3 module regulating the balance between luteolin and
sesquiterpene biosynthesis.

Having identified thedarkseagreen3module as beingassociatedwith
sesquiterpenoid and flavonoid biosynthesis we next investigated the
differential expression patterns of the identified candidate genes for
terpenoid and flavonoidmetabolism. Note that some of these candidate
genes had very low expression abundance and were not considered in
differential expression analysis. Among the candidate genes of the
terpenoid pathway, F. TPS1, TPS3, and TTS8, were located in darksea-
green3 module. These candidate genes of terpenoid pathway, were
more abundant in flowers as compared to all other organs tested
(Figure 4, Supplementary Figure S11 and Supplementary Table S7).
This observation was consistent with the eigengene values for upre-
gulated sesqui- and tri-terpenoid biosynthetic pathways among dif-
ferent organs (Figure S14B). Thus, these are candidate genes for the
high levels of sesqui- and tri-terpenoid compounds observed in flowers.

Consistent with luteolin being most abundant in flowers (Supple-
mentary Figure S7B) (Naoumkina et al. 2010; Vogt 2010; Li et al. 2018),

Figure 4 The TPM (Transcripts Per Kilobase Million values) of the
candidate genes of TPS, terpene synthases; TTS, triterpenoid metab-
olism for different organs. The candidate gene names were provided
in Supplementary Table S5.
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we identified several candidate genes including F. CHI-like1, CHI-like4,
CHS-like1, FH-like1, and FNS with predicted roles in phenylpropa-
noid metabolism that were most abundant in flowers and were also
located in the darkseagreen3 WGCNA module (Figure 5). Note that,
F. assafoetida CHI-like4, FH-like1, and FNS were upregulated in
flavonoid biosynthesis pathway (Supplementary Figure S12). FNS
activity is essential for luteolin biosynthesis (Chen et al. 2018), thus,
FNS could be considered as candidate gene for luteolin biosynthesis
in F. assafoetida. All these candidates were upregulated in flowers
(Figure 5, Supplementary Figure S12 and Supplementary Table S8).

Also of interest, is the coral module. The coral module has a positive
and significant correlation (r = 0.72, adjusted p-value = 0.008) with
sesquiterpene. The coral module exhibited higher abundance in roots
thanotherorgan types.Thismeans that thegenes incoralmodulemayact
as activators for sesquiterpene synthesis. See Figure S15 for a depiction of

how the darkseagreen3 and coral modules may act in sesquiterpene
biosynthesis. The coral module included three transcripts, “oases6_k43_
Locus_7389_Transcript_8_1”, “oases6_k31_Locus_24182_Transcript_
3_1”, and “oases6_CL10402Contig1_1”, that had significant matches
to terpene synthase genes. These three genes also have a GO term
of terpene synthase activity indicating their contribution to this func-
tion. Furthermore, these candidate genes all had a higher expression
level in roots vs. flowers (Figure S16).

Combining tissue-specific transcriptome andmetabolite analyses of
the medicinal plant F. assafoetida identified candidate genes with pos-
sible roles in the biosynthesis of sesquiterpenoid and flavonoid metab-
olites as major bioactive constituents in the plants oleo-gum-resin.
These resources can facilitate further gene function studies toward
key bioactive natural products that define the medicinal properties of
this traditional medicinal plant. Moreover, we provide detailed

Figure 5 The TPM (Transcripts Per Kilobase Million values) of the candidate genes of PAL (A), 4CL (B), CHS (C), CHI (D), FNS (E), F3H (F) as key
genes of phenylalanine reactions for different organs. PAL, phenylalanine ammonia-lyase; 4CL, 4-coumarate:CoA-ligase; CHS, chalcone syn-
thases; CHI, chalcone isomerases; FNS, flavone synthases; and F39H, flavanone 3-hydroxylase. The candidate gene names were provided in
Supplementary Table S6.
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assembly protocol to enable efficient transcriptome analyses in a
broader range of non-model plant species.
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